17 research outputs found

    Information Is Selection-A Review of Basics Shows Substantial Potential for Improvement of Digital Information Representation

    Get PDF
    Any piece of information is a selection from a set of possibilities. In this paper, this set is called a "domain". Digital information consists of number sequences, which are selections from a domain. At present, these number sequences are defined contextually in a very variable way, which impairs their comparability. Therefore, global uniformly defined "domain vectors" (DVs), with a structure containing a "Uniform Locator" ("UL"), referred to as "UL plus number sequence", are proposed. The "UL" is an efficient global pointer to the uniform online definition of the subsequent number sequence. DVs are globally defined, identified, comparable, and searchable by criteria which users can define online. In medicine, for example, patients, doctors, and medical specialists can define DVs online and can, therefore, form global criteria which are important for certain diagnoses. This allows for the immediate generation of precise diagnostic specific statistics of "similar medical cases", in order to discern the best therapy. The introduction of a compact DV data structure may substantially improve the digital representation of medical information

    A discrete and finite approach to past physical reality

    Get PDF
    This paper is a synthesis of previously published material on the topic. We show that an adequate mathematical model for the physical (i.e., perceptible and therefore past) reality must be finite. A finite approach to past proper time is given. Proper time turns out to be proportional to the sum of the return probabilities of a Bernoulli random walk

    We Can Define the Domain of Information Online and Thus Globally Uniformly

    No full text
    Any information is (transported as) a selection from an ordered set, which is the “domain” of the information. For example, any piece of digital information is a number sequence that represents such a selection. Its senders and receivers (with software) should know the format and domain of the number sequence in a uniform way worldwide. So far, this is not guaranteed. However, it can be guaranteed after the introduction of the new “Domain Vector” (DV) data structure: “UL plus number sequence”. Thereby “UL” is a “Uniform Locator”, which is an efficient global pointer to the machine-readable online definition of the number sequence. The online definition can be adapted to the application so that the DV represents the application-specific, reproducible features in a precise (one-to-one), comparable, and globally searchable manner. The systematic, nestable online definition of domains of digital information (number sequences) and the globally defined DV data structure have great technical potential and are recommended as a central focus of future computer science
    corecore